

Wastewater collection and treatment WHY & HOW ?

Ondrej Dusek W&WM

03/2014

Wastewater collection

Wastewater treatment

 This presentation focuses on biological processes for basic biological treatment (carbon removal) and nitrogen removal, and biological and chemical processes for phosphorus removal

Why the above processes?

- common and well known
- very efficient, very good effluents
- suitable for both municipal and most industrial waste waters
- reliable, simple

• Although the processes are well known still many WWTPs have big problems with N-removal (optimistic dimensioning, too complicated, design mistakes, software etc.)

Basic biological treatment

Practically all biological processes are capable to achieve high level C-removal, many microorganisms contribute to the process.

They reproduce (multiple) quickly i.e. even low sludge age is enough (i.e. high sludge loads, less biomass -> small activation tanks, or biocarries, etc.)
Low O2 concentration needed (0.5 mg/l)
Sound process design is necessary. Reliable systems work with sludge age of 5 days and more (conventional biological treatment and variations).

Efficiency = f (SA) (Nopon manual)

Type of process configuration	Treatment	t efficiency % loval of:	Sludge age	Organic volumetric load
	BOD	NH ₄ /N	d	kgBOD/m ³ ·d
Conventional	85-95		5-10	0.3-0.6
Tapered aeration	85-95		5-10	0.3-0.6
Step aeration	80-90		5-10	0.6-1.0
Complete mixing	80-90		3-10	0.8-2.0
Contact stabilization	80-90		5-10	1.0-1.2
Kraus & Hatfield	85-95		3-10	0.6-1.6
High-rate	60-80		1-3	2.0-6.0
Extended aeration	85-95	>90/-	15-30	0.1-0.4
Oxidation ditch	90-95	>90/50	15-30	0.1-0.3
Carousel	95-98	>90/50	20-40	0.2-0.4
Aerated lagoon	50-75			
2-stage	>95	>90/-	1-3/5-10	2.0-3.0/0.3-0.7
Aerobic-anoxic	90-95	>90/60-90	7-15	0.2-0.4
Anoxic-aerobic	90-95	>90/60-90	10-20	0.2-0.4
Bardenpho	90-95	>90/60-90	14-20	0.1-0.3
		P 80-90		And the second states

European Investment Bank

Methods for N-removal

	F	Nc			
Process	Norg N-NH ₄ ⁺ N-NO ₃ ⁻		N-NO ₃ -	removal %	
Basic biological treat	ment (focused	l on Carbon i	removal)		
Primary sedimentation	10-20 %			5 – 10	
Activated sludge – basic biological treatment	15-50 % ($\rightarrow N-$ NH_4^+)	< 10 %	slightly	10 - 30	
Biological processes					
Assimilation by Microorganisms		40-70 %	slightly	30 – 70	
Algae and similar biomass	$(\rightarrow N-$ $NH_4^+)$	→ cells	\rightarrow cells	50 - 80	
Nitrification	10-50 %	\rightarrow N-NO ₃ -		5 - 20	
Denitrification			80-90 %	70 – 95	
Biological ponds	$(\rightarrow N- N- NH_4^+)$	partially	partially	20 - 90	

	F	Nc			
Process	Norg	$N-NH_4^+$	N-NO ₃ -	Removal %	
Chemical processes	(problematic	with untreate	ed waste wate	r)	
Chlorination	Not garanted	90-100 %		80 - 95	
Coagulation	50-90 %	slightly	slightly	20 – 30	
Active coal	30-50 %	slightly	slightly	10 - 20	
Ion exchange NH ₄ ⁺	slightly	80-97 %		70 - 95	
Ion exchange NO ₃ -	slightly	slightly	75-90 %	70 - 90	
Physical processes (problematic with untreated waste water)					
Stripping		60-95 %		50 - 90	
Electrodialises	100 % of SS form	30-50 %	30-50 %	80 - 90	
Filtration	30-100 % of SS form	slightly	slightly	20 - 40	
Reverse osmosis	100 %	60-90 %	60-90 %	80 - 90	

	F	Nc		
Process	Norg	Norg N-NH ₄ ⁺ N-NO ₃ ⁻		Removal %
Application on land				
Irrigation	\rightarrow N-NH ₄ ⁺	\rightarrow N-NO ₃ ⁻ , plants	$\rightarrow N_2,$ plants	60 – 90
Infiltration systems	\rightarrow N-NH ₄ ⁺	\rightarrow N-NO ₃	$\rightarrow N_2$	30 - 80
Root systems, wetlands	\rightarrow N-NH ₄ ⁺	\rightarrow N-NO ₃ - plants	$\rightarrow N_2,$ plants	70 – 90

Activated sludge process is :

- 1. efficient all over the year
- 2. well controllable
- 3. suitable for municipal waste water
- 4. well operational all over the year

Biological nitrification and denitrification becomes a part of biological treatment process if favorable conditions for activated sludge (mixed liquor) are set (by process design, civil and M&E part and operation)

Oxic nitrification process converts N-NH₄ to N-NO₃.

Anoxic denitrification process converts N-NO3 to N_2 and O_2 (O_2 is utilized for respiration, N_2 escapes to athmosphere)

How to assure N-removal ?

Nitrificants are more sensitive and "slower" then other microorganisms responsible for the basic biological treatment
They reproduce (multiple) slowly i.e. higher sludge age is necessary (i.e. lower sludge loads, more biomass → bigger activation tanks, or biocarries, membrane technologies etc.)
Higher O2 concentration required
Sound process design is necessary. Reliable systems work with sludge age of 18 days and more (i.e. aerobic sludge age ~ 12 days).

Lowering the load to the biological stage expressed in PE or kg BOD₅/day increases the waste water treatment efficiency

Europea Investm Bank

WW collection and treatment

University Stuttgart (Germany, prof.Hanish)

Basic biological treatment plus N-removal

Note that with the same activation tank (given volume V_{AT} and concentration of activated sludge C_{MLSS}) you can get partial treatment, quality basic biological treatment, and high quality biological treatment with biological N-removal, and with anaerobic tank also even biological P-removal – just based on the actual load, i.e. the efficiency of WWTP can vary in the course of time according to the load conveyed by the sewerage system (L ...here in kgBOD./day)

P-removal

 Biological process – "luxury uptake" (activated sludge subjected first to anaerobic and then to oxic conditions)

 Chemical precipitation by Fe or Al 3+ salts (into AT, in front of FST, separate stage) – see next slide

03/2014

WW collection and treatment

Conventional

Trickling filter

European Investment Bank

Membrane reactor

Rotating biological contactor (RBC)

Lagoons

03/2014

WW collection and treatment

Always it is necessary to respect the overall flow scheme and natural principles

Different arrangements differ in reaction kinetics, treatment efficiencies, ask for different dimensioning, remote control etc. (E.g. Detention times incl. recirculation, MLSS conc., availability of well biodegradable nutrients, N loads, temperature, min. oxic age, oxygen regime, good mixing, chemical dosing for simultaneous P-removal)

For the highest treatment efficiency the separation of biological and chemical processes is recommended.

Inflow - coarse treatment – primary treatment – biological stage(s) – chemical stage(s) - outflow

Directive 91/271/EEC

Parametry Parameters	Koncentrace Concentration	Minimální procento úbytku ¹ Minimum percentage of reduction ¹
Celkový fosfor Total phosphorus	2 mg/l (10 000-100 000 EO - p.e.) 1 mg/l (nad - more than 100 000 EO - p.e.)	80
Celkový dusík ² Total nitrogen ²	15 mg/l (10 000-100 000 EO - p.e.) ³ 10 mg/l (nad - more than 100 000 EO p.e.) ³	70-80

For 2 mg/l biological method or simultaneous precipitation is sufficient, for < 1 mg/l separate chemical stage is recommended (combination with biological method is possible)

Possible situations

PE	0 treat- ment	Primary treat- ment	Basic biological treatment	BBT + P rem oval	BBT + N removal	BBT + N + P removal 15 10 2 1
< 500 PE	•					
500 - 2000 PE	-					
2000 – 10000 PE	•				•	
10000 – 100000 PE	•		•			
> 100000 PE	-					

Sludge treatment

WW collection and treatment

Aerobic stabilization

WWTP with	These WWTPs are designed for waste water treatment with simultaneous sludge
extended	aerobic stabilization and produce aerobically stabilized sludge. These plants
aeration	should never have primary sedimentation.
Sludge age	The process removes nitrogen and can remove phosphorus.
around 25 days	For small and middle size WWTPs this is the best process option.

Aerobic stabilization

Anaerobic stabilization

WWTP with low loaded These WWTPs are designed for very good efficiency of treatment biological stage, with including nutrient removal. nutrient removal This option should be justified by detail process design preferably with process modeling. As there is no primary sludge produced the production Sludge age around 15 – of biogas will be very low - economy of the process ?? 20 days **Biological stage** Final sedimentation Coarse treatment Return sludge Excess sludge Sludge thickening Gas holder Sludge dewatering Anaerobic digestion Very good efficiency of treatment with N-removal & P-removal, guite Energy centre complicated sludge treatment with **Dewatered sludge** low production of biogas

03/2014

Anaerobic stabilization

These WWTPs are designed for very good efficiency of treatment WWTP with low loaded including nutrient removal. biological stage, with nutrient removal Sludge age around 15-20 This is the best option for big WWTPs. **Biological stage** Final sedimentation Coarse treatment Return sludge Primary sludge Sludge thickening **Excess sludge** Gas holder Sludge thickening Sludge dewatering Very good efficiency of treatment with N-removal & P-removal, quite Anaerobic digestion complicated sludge treatment with high production of biogas enabling **Energy centre Dewatered sludge** efficient heat and electricity production

WW collection and treatment

erobic stabilization These WWTPs are designed for very good efficiency of treatment WWTP with low loaded including nutrient removal. biological stage, with nutrient removal Sludge age around 15-20 This is the option for middle sized WWTPs. **Biological stage** Final sedimentation Coarse treatment Return sludge Primary sludge Sludge thickening Excess sludge Gas holder Sludge thickening Sludge Very good efficiency of treatment dewatering with N-removal & P-removal, Aerobic digestion simple sludge treatment with no production of biogas, on contrary **Energy centre** with high energy consumption **Dewatered sludge**

03/2014

Sludge stabilization options = f (PE)

Comments

- The above schemes indicate that the anaerobic sludge stabilization is far more complicated then the extended aeration with simultaneous aerobic sludge stabilization
- Biological treatment lines can be designed for very high efficiency of treatment including N and P removal, i.e. for tertiary treatment
- Many CBAs indicate that anaerobic digestion is not good option for middle size WWTPs as the energy and heat production asks for a big first cost and then NPV is higher. The decision making is frequently influenced by the "cheap" EU money (grants around 80%)

Sludge disposal options

- Composting
- Direct fertilizing
- (Co-) Incineration
- Land-filling (>35%DS)
- Synthetic soil production
- Cement works
- Energy compost

+ cheap, available

What is frequently absent

- National or at least regional sludge disposal strategy
- Knowledge of EU and local legislation > knowledge of real needs
- Knowledge of aspects influencing WWTP design according to different options of sludge treatment (e.g. different quantity and quality of sludge water)
- Realistic approach
- Preference of simple and environment friendly solutions (win-win, ...)

Be careful: The higher % of grant – the more elaborate and expensive option with the minimum added value and sustainability can occur

Remember:

Investm Bank

- WWTP including sludge treatment is like puzzle
- All parts have to fit together and especially to (i) effluent standards, i.e. wastewater treatment process, (ii) sludges produced in the treatment processes (excess, primary, raw, chemical); (ii) sludge final disposal option, i.e. sludge treatment process; (iii) and of course economy (NPV) → one has to create a meaningful and sustainable system

This virtually fits together but will not work properly

Check list - existing WWTP

WWTP load	Present load and design load:
	Number of PE
	Q m3/d average, maximum day
	Q m3/h maximum dry weather flow and maximum wet weather flow
	BOD5, COD, SS, Ntot, N-NH4, Ptot kg/day
	Specific industrial waste waters ?
	Combined or separate sewerage system? If combined how overflows and rain detention tanks are designed, other measures, by-passes? Design wet weather flow through the secondary stage?
Primary treatment	Shape, surface area and volume of primary sedimentation tanks
Secondary treatment	Shape and volume of activated sludge tanks (anaerobic, anoxic, oxic, reaeration, contact – mixed, ditch, circular, rectangular, depth), blower capacity
	Shape, sufface area and volume of secondary sedimentation tanks Dosing of chemicals ?
Other stages	e.g. Chemical precipitation, filtration, disinfection – description, volumes, design capacities
Other data	Simple flow scheme
	Contact person + tel + e-mail
Sludge treatment	Short description, volumes of tanks

The above data will enable a fast assessment of WWTP capability to remove nutrients.

Thank you for listening

Ondrej Dusek EIB technical services, water & waste management division dusek@eib.org